Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36673413

RESUMO

Canola meal, the by-product of canola oil refining, is a rich source of phenolic compounds and protein. The meal, however, is primarily utilized as animal feed but represents an invaluable source of nutraceuticals. Of particular interest are the sinapates, sinapine and sinapic acid, with the decarboxylation of the latter to form canolol. Extracting these phenolics has been carried out using a variety of different methods, although there is an urgent need for environmentally safe and sustainable methods. Microwave-assisted solvent extraction (MAE), as a green extraction method, is receiving considerable interest. Its ease of use makes MAE one of the best methods for studying multiple solvents. The formation of canolol, from sinapine and sinapic acid, is primarily dependent on temperature, which favors the decarboxylation reaction. The application of MAE, using the MultiwaveTM 500 microwave system with green extractants, was undertaken to assess its ability to enhance the yield of sinapates and canolol. This study examined the effects of different pre-treatment temperature-time combinations of 140, 150, 160, and 170 °C for 5, 10, 15, 20, and 30 min on the extraction of canolol and other canola endogenous phenolic compounds. Total phenolic content (TPC), total flavonoid content (TFC), as well as metal ion chelation (MIC) and DPPH radical activity of the different extracts were assessed. The results confirmed that extractability of canolol was optimized with methanol at 151 °C and with ethanol at 170 °C with pre-treatment times of 15.43 min and 19.31 min, respectively. Furthermore, there was a strong positive correlation between TPC and TFC (p < 0.05) and a negative correlation between TFC and DPPH radical activity. Interestingly, no significant correlation was observed between MIC and DPPH. These results confirmed the effectiveness of MAE, using the novel MultiwaveTM 500 microwave instrument, to enhance the yield of canolol. This was accompanied by substantial improvements in the antioxidant activity of the different extracts and further established the efficacy of the current MAE method for isolating important natural phenolic derivatives for utilization by the nutraceutical industry.

2.
Antioxidants (Basel) ; 11(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36552619

RESUMO

This study investigated the efficacy of roasting pre-treatment by air frying to enhance the extraction and recovery of the predominant sinapic acid derivatives (SADs) from roasted canola meal and the antioxidant potential of the methanolic extracts. Canola meal was obtained by air frying canola seed at 160, 170, 180 or 190 °C for 5, 10, 15 or 20 min. Oil was extracted using the Soxhlet method, and the de-oiled meal fraction was air-dried. Phenolic compounds were isolated using ultrasound-assisted extraction with 70% (v/v) methanol and then quantified by high-performance liquid chromatography-diode array detection. The antioxidant potential of the defatted meal methanolic extracts was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and metal ion-chelating activity (MIC) assays. The highest total phenolic content of 3.15 mg gallic acid equivalent/g dry weight was recorded in the defatted meal extract from seeds pre-treated with air frying at 190 °C for 15 min. Sinapine, sinapic acid and an unknown compound at a retention time (RT) of 26.6 min were the major sinapates identified in the defatted meal with the highest concentrations of 7572 ± 479.2 µg/g DW, 727 ± 43.45 µg/g DW and 1763 ± 73.5 µg/g DW, respectively, obtained at 160 °C for 5 min. Canolol (151.35 ± 7.65 µg/g DW) was detected after air frying at a temperature of 170 °C for 20 min. The FRAP and MIC correlated positively (r = 0.85) and generally decreased with increased air frying temperature-time conditions. The highest FRAP and MIC values of 0.53 mM and 80% were obtained at 160 °C for 5 and 20 min, respectively. The outcome of this study will contribute new knowledge that could improve the value addition and by-product utilization of canola seeds.

3.
Adv Food Nutr Res ; 100: 109-129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35659350

RESUMO

The health and safety concerns associated with synthetic antioxidants has resulted in an urgent search for natural sources of antioxidants. Such antioxidants are not only convenient but may also have important therapeutic properties. Oilseed crops, for example, are rich in phenolic compounds some of which exhibit powerful antioxidant properties that have broad applications in both the food and feed industry. Often, the concentration of these phenolic compounds is affected by many processing conditions including temperature, pressure, pH, and extracting solvents. Hence it is important to optimize processing conditions to obtain maximum levels of those antioxidants with superior antioxidant activity. Oilseeds, such as canola and mustard, are rich sources of sinapates and kaempferol derivatives. When subjected to different processing conditions, including pressurized temperature, sinapates are converted to vinyl phenol derivatives, of which the major one is canolol. This chapter will focus on the nature of canolol and its applications in food and medicine.


Assuntos
Antioxidantes , Fenóis , Antioxidantes/farmacologia , Fenóis/química , Fenóis/farmacologia , Compostos de Vinila/química
4.
Adv Colloid Interface Sci ; 304: 102663, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430426

RESUMO

Understanding the complicated emulsion microstructures by microscopic images will help to further elaborate their mechanisms and relevance. The formidable goal of the classification and quantification of emulsion microstructure appears difficult to achieve. However, object detection algorithm in deep learning makes it feasible. This paper reports a new technique for evaluating Pickering emulsion properties through classification and quantification of the emulsion microstructure by object detection algorithm. The trained neural network models characterize the emulsion droplets by distinguishing between different individual emulsion droplets and morphological mechanisms from numerous microscopic images. The quantified results of the emulsion droplets presented in this study, provide details of statistical changes at different concentrations of the Pickering interface and storage temperatures enabling elucidation of the mechanisms involved. This methodology provides a new quantitative and statistical analysis of emulsion microstructure and properties.


Assuntos
Aprendizado Profundo , Emulsões/química , Tecnologia de Alimentos , Tamanho da Partícula
5.
Antibiotics (Basel) ; 10(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34572626

RESUMO

The extensive usage of antibiotics and the rapid emergence of antimicrobial-resistant microbes (AMR) are becoming important global public health issues. Many solutions to these problems have been proposed, including developing alternative compounds with antimicrobial activities, managing existing antimicrobials, and rapidly detecting AMR pathogens. Among all of them, employing alternative compounds such as phytochemicals alone or in combination with other antibacterial agents appears to be both an effective and safe strategy for battling against these pathogens. The present review summarizes the scientific evidence on the biochemical, pharmacological, and clinical aspects of phytochemicals used to treat microbial pathogenesis. A wide range of commercial products are currently available on the market. Their well-documented clinical efficacy suggests that phytomedicines are valuable sources of new types of antimicrobial agents for future use. Innovative approaches and methodologies for identifying plant-derived products effective against AMR are also proposed in this review.

6.
J Food Sci ; 86(9): 3810-3823, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34342008

RESUMO

Roasting of mustard seeds prior to oil extraction is a well-documented unit operation essential to produce canolol and other lipophilic sinapates. This study investigated the effectiveness of air frying as a seed roasting treatment operation for enhancing the recovery of lipophilic sinapates from various mustard samples and fractions/products. Air frying of seeds, powder, cake, bran, and flour from different mustard varieties was carried out at temperature-time combinations of 160, 170, and 180°C for 5, 10, 15, and 20 min, respectively. Oil was extracted using the Soxtec method. Lipophilic sinapates were extracted from the oil using equal volumes of hexane to methanol 70% (v/v) and quantified by high performance liquid chromatography-diode array detection (HPLC-DAD). The total phenolic content (TPC) and antioxidant activity of the oils were also evaluated. The results showed a time-temperature dependency for the recovery of major oil-soluble sinapates in all mustard samples and fractions. The optimum air frying condition 180°C for 15 min produced the maximum yield of canolol as well as other unidentified oil-soluble sinapates (retention time (RT)-7.7, RT-11.50, RT-14.95, and RT-16.24 min). The oil from lower grade yellow mustard seeds (LGYMS) roasted at 180°C for 20 mins specifically had the highest TPC (3402.22 ± 58.79 mg GAE/g oil), while LGYMS oils generally showed better antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion reducing antioxidant power (FRAP), and inhibition of linoleic acid oxidation) but were lower in metal ion chelating capacity. This information would be beneficial to the oil industry because air frying generated valuable canolol and other antioxidant lipophilic sinapates from mustard varieties and their fractions. PRACTICAL APPLICATION: A major limitation in the application of natural extracts in vegetable oils is the poor lipophilic nature of phenolic compounds. This study employed a new thermal treatment (air frying) in the recovery of canolol and other lipophilic antioxidants. Such treatments can enrich mustard-based ingredients with canolol and other lipophilic antioxidants for domestic and industrial applications.


Assuntos
Antioxidantes , Culinária , Ácidos Cumáricos , Mostardeira , Cromatografia Líquida de Alta Pressão , Culinária/métodos , Ácidos Cumáricos/química , Ácidos Cumáricos/isolamento & purificação , Mostardeira/química , Óleos de Plantas/química , Sementes/química
7.
Front Nutr ; 8: 687851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277685

RESUMO

RapidOxy® 100 is an automated instrument originally designed for measuring the oxidative stability of both solid and liquid samples. The compact and portable design of RapidOxy® 100, and its built-in pressurized heating chamber, provides a suitable environment for studying processing conditions. The feasibility of using oxygen or an inert atmosphere provides the ideal environment to study the effect of dry heat pre-treatment on canola antioxidants. The current study used RapidOxy® 100 to examine the impact of pressurized dry heat pre-treatment, under nitrogen, on the ultrasonic extraction of phenolic compounds. The effect of different pre-treatment temperature-time combinations of 120, 140, 160, and 180°C for 2, 5, 10, 15, and 20 min on the subsequent extraction of canola phenolic compounds was examined. The major sinapates identified by HPLC were sinapine, sinapic acid, and canolol. The optimum RapidOxy® condition for the maximum recovery of canolol was 160°C for 10 min. RapidOxy® 100 proved to be a novel and versatile instrument for enhancing the extraction of phenolic compounds.

8.
Adv Food Nutr Res ; 96: 27-88, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34112356

RESUMO

Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.


Assuntos
Fósforo na Dieta , Fósforo , Osso e Ossos , Aditivos Alimentares , Humanos , Fosfatos
9.
Adv Food Nutr Res ; 96: xi-xii, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34112361
10.
J Food Sci ; 84(11): 3117-3128, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31663155

RESUMO

Canola meal, a by-product of oil pressing, is a rich source of phenolic antioxidants. However, its use in the food and feed sector is still limited by the need for greener, sustainable, and more cost-effective extraction methods. This study used accelerated solvent extraction (ASE) to enhance the extraction efficiency of the phenolic antioxidants. The high selectivity and short extraction time associated with ASE were ideal for obtaining high yields of these antioxidants. The structure-based activity of phenolic compounds may be influenced by the high pressure and temperature of the greener ASE process. The present study evaluated the effect of temperature (140, 160, and 180 °C) and pressure (1,500 psi) on the extraction and yield of phenolic compounds from canola meal as well as the solvent type (ethanol and methanol) and concentration (30%, 40%, 60%, and 70% v/v). Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl, ferric reducing/antioxidant power assay, and ion-chelating activity. The highest yield of phenolic compounds was obtained with 70% methanol (20.72 ± 1.47 mg SAE/g DM [milligrams of sinapic acid equivalents per gram of dry matter]) and 70% ethanol (24.71 ± 2.77 mg SAE/g DM) at 180 °C temperature. A similar trend was observed for the antioxidant activity of the extracts and their total flavonoid content. The structure-based antioxidant activity of the extracts examined increased with the increase in the percentage of the extracting solvent (P > 0.05). This study established ASE as an efficient green method for extracting phenolic compounds from canola meal, with potential application for the production of natural bioactive compounds from underutilized agricultural by-products. PRACTICAL APPLICATION: ASE is an efficient eco-friendly method for extracting phenolic compounds from agricultural by-products such canola meal. Under the conditions of high pressure and temperature, ASE significantly improved the yields of phenolic compounds, sinapine, sinapic acid, and canolol. Under these conditions, water, as an extractant, was not effective in extracting sianpine. Moreover, it was much less effective than both 70% ethanol and 70% methanol in extracting sinapine or canolol. These phenolic compounds are of great interest as natural antioxidants for enhancing the shelf life of food products. They also represent new sources of neutraceuticals for improving human health.


Assuntos
Antioxidantes/isolamento & purificação , Polifenóis/isolamento & purificação , Óleo de Brassica napus/química , Ácidos Cumáricos , Etanol , Flavonoides/análise , Manipulação de Alimentos/métodos , Humanos , Metanol , Fenóis , Extratos Vegetais/química , Pressão , Solventes , Temperatura , Compostos de Vinila
12.
Biochem Cell Biol ; 96(2): 169-177, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28915355

RESUMO

Adequate thiamin levels are crucial for optimal health through maintenance of homeostasis and viability of metabolic enzymes, which require thiamine as a co-factor. Thiamin deficiency occurs during pregnancy when the dietary intake is inadequate or excessive alcohol is consumed. Thiamin deficiency leads to brain dysfunction because thiamin is involved in the synthesis of myelin and neurotransmitters (e.g., acetylcholine, γ-aminobutyric acid, glutamate), and its deficiency increases oxidative stress by decreasing the production of reducing agents. Thiamin deficiency also leads to neural membrane dysfunction, because thiamin is a structural component of mitochondrial and synaptosomal membranes. Similarly, in-utero exposure to alcohol leads to fetal brain dysfunction, resulting in negative effects such as fetal alcohol spectrum disorder (FASD). Thiamin deficiency and prenatal exposure to alcohol could act synergistically to produce negative effects on fetal development; however, this area of research is currently under-studied. This minireview summarizes the evidence for the potential role of thiamin deficiency in fetal brain development, with or without prenatal exposure to alcohol. Such evidence may influence the development of new nutritional strategies for preventing or mitigating the symptoms of FASD.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Encéfalo/embriologia , Embrião de Mamíferos/embriologia , Transtornos do Espectro Alcoólico Fetal/metabolismo , Neurogênese , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Deficiência de Tiamina/embriologia , Encéfalo/patologia , Embrião de Mamíferos/patologia , Feminino , Transtornos do Espectro Alcoólico Fetal/patologia , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Tiamina/metabolismo , Deficiência de Tiamina/patologia
13.
Appl Biochem Biotechnol ; 175(1): 194-208, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25248993

RESUMO

Alkali/acid-pretreated canola meal and mustard bran were subjected to endo-1,4-ß-xylanase (T. longibrachiatum) hydrolysis for oligosaccharide production. Pretreatments significantly (α = 0.05) increased the relative content of pentose sugars, especially in alkali-pretreated canola meal (∼44 %) and mustard bran (∼72 %). The amounts of pentosan (g/100 g) in acid- and alkali-pretreated canola meal were 7.50 and 8.21 and in corresponding mustard bran were 8.67 and 10.39, respectively. These pretreated substrates produced a pentose content (g/100 g) of 2.10 ± 0.14 (18 h) and 2.95 ± 0.10 (24 h), respectively, during hydrolysis. As per UPLC-MS data, the main oligosaccharides in the hydrolyzates of alkali-pretreated substrates are xylo-glucuronic acid and xylobiose. The release of total phenolics of the hydrolyzates increased until 18 h irrespective of the type of substrate or pretreatment. Hydrolyzates of acid-pretreated substrates indicated more total antioxidant activity than alkali-pretreated substrates, attributed to its high phenolic content. The study suggests the potential of canola meal and mustard bran for the production of oligosaccharides, wherein the use of various combinations of cell-wall-degrading enzymes and its optimization may result in a better yield, with simultaneous production of endogenous phenolics.


Assuntos
Endo-1,4-beta-Xilanases/química , Mostardeira/química , Oligossacarídeos/síntese química , Ácidos Graxos Monoinsaturados/química , Hidrólise , Hidroxibenzoatos/síntese química , Hidroxibenzoatos/química , Oligossacarídeos/química , Óleo de Brassica napus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...